Combinatorial Minimal Free Resolutions of Ideals with Monomial and Binomial Generators
نویسندگان
چکیده
In recent years, the combinatorial properties of monomials ideals [7, 10, 14] and binomial ideals [9, 10] have been widely studied. In particular, combinatorial interpretations of minimal free resolutions have been given in both cases. In this present work, we will generalize existing techniques to obtain two new results. The first is S[Λ]-resolutions of Λ-invariant submodules of k[Z] where Λ is a lattice in Z satisfying some mild conditions. A consequence will be the ability to resolve submodules of k[Z/Λ], and in particular ideals J of S/IΛ, where IΛ is the lattice ideal of Λ. Second, we will provide a detailed account in three dimensions on how to lift the aforementioned resolutions to resolutions of ideals in k[x, y, z] with monomial and binomial generators.
منابع مشابه
Splittable Ideals and the Resolutions of Monomial Ideals
We provide a new combinatorial approach to study the minimal free resolutions of edge ideals, that is, quadratic square-free monomial ideals. With this method we can recover most of the known results on resolutions of edge ideals with fuller generality, and at the same time, obtain new results. Past investigations on the resolutions of edge ideals usually reduced the problem to computing the di...
متن کاملAsymptotic behaviour of associated primes of monomial ideals with combinatorial applications
Let $R$ be a commutative Noetherian ring and $I$ be an ideal of $R$. We say that $I$ satisfies the persistence property if $mathrm{Ass}_R(R/I^k)subseteq mathrm{Ass}_R(R/I^{k+1})$ for all positive integers $kgeq 1$, which $mathrm{Ass}_R(R/I)$ denotes the set of associated prime ideals of $I$. In this paper, we introduce a class of square-free monomial ideals in the polynomial ring $R=K[x_1,ld...
متن کامل. A C ] 1 6 D ec 1 99 8 Alexander Duality for Monomial Ideals and Their Resolutions
Alexander duality has, in the past, made its way into commutative algebra through Stanley-Reisner rings of simplicial complexes. This has the disadvantage that one is limited to squarefree monomial ideals. The notion of Alexander duality is generalized here to arbitrary monomial ideals. It is shown how this duality is naturally expressed by Bass numbers, in their relations to the Betti numbers ...
متن کاملResolutions of Square-free Monomial Ideals via Facet Ideals: a Survey
We survey some recent results on the minimal graded free resolution of a square-free monomial ideal. The theme uniting these results is the point-of-view that the generators of a monomial ideal correspond to the maximal faces (the facets) of a simplicial complex ∆. This correspondence gives us a new method, distinct from the Stanley-Reisner correspondence, to associate to a square-free monomial...
متن کاملTHE LCM-LATTICE in MONOMIAL RESOLUTIONS
Describing the properties of the minimal free resolution of a monomial ideal I is a difficult problem posed in the early 1960’s. The main directions of progress on this problem were: • constructing the minimal free resolutions of special monomial ideals, cf. [AHH, BPS] • constructing non-minimal free resolutions; for example, Taylor’s resolution (cf. [Ei, p. 439]) and the cellular resolutions •...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014